Global Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions
نویسندگان
چکیده
We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz estimate and exclude a mass evacuation scenario (somewhat analogously to [9], [23], [36]) in order to conclude the argument.
منابع مشابه
The Mass-critical Nonlinear Schrödinger Equation with Radial Data in Dimensions Three and Higher
We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger equation iut+∆u = ±|u|4/du for large spherically symmetric Lx(R d) initial data in dimensions d ≥ 3. In the focusing case we require that the mass is strictly less than that of the ground state. As a consequence, we obtain that in the focusing case, any spherically symmetric blowup solutio...
متن کاملThe Cubic Nonlinear Schrödinger Equation in Two Dimensions with Radial Data
We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger equation iut +∆u = ±|u|u for large spherically symmetric Lx(R ) initial data; in the focusing case we require, of course, that the mass is strictly less than that of the ground state. As a consequence, we deduce that in the focusing case, any spherically symmetric blowup solution must conc...
متن کاملGlobal well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data
We consider the defocusing, ˙ H 1-critical Hartree equation for the radial data in all dimensions (n ≥ 5). We show the global well-posedness and scattering results in the energy space. The new ingredient in this paper is that we first take advantage of the term − I |x|≤A|I| 1/2 |u| 2 ∆ 1 |x| dxdt in the localized Morawetz identity to rule out the possibility of energy concentration, instead of ...
متن کاملGlobal well-posedness and scattering for the mass-critical Hartree equation with radial data
We establish global well-posedness and scattering for solutions to the masscritical nonlinear Hartree equation iut +∆u = ±(|x|−2 ∗ |u|2)u for large spherically symmetric L2x(R ) initial data; in the focusing case we require, of course, that the mass is strictly less than that of the ground state.
متن کاملStability of Energy-critical Nonlinear Schrödinger Equations in High Dimensions Terence Tao and Monica Visan
We develop the existence, uniqueness, continuity, stability, and scattering theory for energy-critical nonlinear Schrödinger equations in dimensions n ≥ 3, for solutions which have large, but finite, energy and large, but finite, Strichartz norms. For dimensions n ≤ 6, this theory is a standard extension of the small data well-posedness theory based on iteration in Strichartz spaces. However, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008